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STATISTLCAL PROPERTIES OF PHOTONS
IN COLLECTIVE RESONANT RAMAN SCATTERING

N.N.Bogolubov,Jr., A.S.Shumovsky, Tran Quang

Statistical properties of the photons in collec-
tive resonant Raman scattering are investigated.
The anticorrelation between Stokes and Rayleigh
lines is observed.

The investigation has been performed at the La-
boratory of Theoretical Physics, JINR.

CtatucTnueckue ceoiicTsa ¢poToHOs
B KOMNEKTUBHOM pe30HAHCHOM paccefHun Pamana

H.H.Boromoe6os /mn./, A.C.llymoBckuii, Yan Kyaur

HcenepoBant cTaTucTHueckue cBoiicTBa doToHOB
B KOJUIGKTHBHOM DE30HAaHCHOM paccesHuu Pamana. Ha6mm—-
A€Ha AHTHKODpPEeNAILHA MEXAY CTOKCOBOIi M paleeBCKOl
JIHHHSMH .

Pa6oTa BhmonneHa B Ma6opaTopun TeopeTHuecKOil
dusuku OHAU.

The photon statistics of various nonlinear optical pro-
cesses has been a subject of increasing interest in recent
years /2-17/ 14 particular, the photon statistics for sti-
mulated Raman scattering has been analysed in works”8:1%/,

In the present paper we consider the photon statistics
for collective resonant Raman scattering (Fig.1). It will
be shown that under a suitable condition the anticorrela-
tion bitween Stokes and Rayleigh lines is observed.

We consider a smaltl system (the Dicke model, 1954) of N
three-level atoms interacting with a resonant driving fi-
|2> eld of the frequency o and

with a field of radiation
(Fig.1). Let us label the

‘él Y ground state by | I >; the
23 real excited state by | 3>

w
Fig.1. Three-level system
¥ 13> of atoms interacting with
! ! the monochromatic applied
e N>  field.
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and the resonant intermediate state by | 2> with energies
®w;,wg and wg respectively (the system of h = 1). The real
excited state| 3> may be a low-lying vibrational or rota-
tional excitation from the ground state. To keep the dis-—
cussion general, we will not specify these states besides
saying that the intermediate state | 2> can be connected
via the electromagnetic interaction Hamiltonian with both
states [1> and | 3> (in the dipole approximation) but the
states | 3> and | 1> are not connected by the dipole Hamil-
tonian because of parity consideration. The transition
3>+ | 1> is caused by an atomic reservoir and assumed
to be nonradiative /18/For simplicity the external driving
field is assumed to be in resonance with the level sepa-
ration (02-.(01-—' Woy = We
In treating the external field classically and using the
Born and Markov approximation, one can obtain a master
equation for the reduced density matrix p for the system
alone in the form/ 1.8/,
d .
3{' = l[Hcoh’P]
- Yoy (Jgy J4pp - Ji9pTgy + H.c.)
(B
~vgs (Jog Jgpp = Jggpdgg + H.c.)

-y31 (Jg1Ty3p - JygpIgy + wc.) = Lp,

where 2yg; and 2yy3 are radiative spontaneous transition
probabilities per unit time for a single atom to change
from the level| 2> to |1> and from | 2> to | 3>, respective~
ly. 2vg; 1is nonradiative rate for transition |3> to |1>.
The coherence part of Hamiltonian H .., in the interaction
picture has the form

Heop= Qgdgg + R Ugy + Jy2 ),

where (g =-i§l- - wgg ; ® is the Radi frequency for the
atomic transition from the level | 2> to |[1>. And Jy; =

N
=k§1 |i§ §j| (i,ji = 1, 2, 3) are the collective angu-
lar momenta of the atoms. They satisfy the commutation re-
lation

[Jl.] ,Jirj;].= J”/ 8]1' —_ Ji’j 61]’ .
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As in Refs.’/8: 19/ ye shall use the Schwinger representation
for the angular momentum

Jj = Ci¢; (i,j = 1,2 3),

where C; obey the boson commutation relation
[Ci, 1= 5.

Further, we invé%tigate only the case of an intense exter—
nal field so that

Q2 >> Ny21,Ny23 and NV31 . (2)
After performing the canonical transformation
S I l.q,
V2 V2
1 ,
Ceg = - —Q,; + —.l.'_—Qz (3)
Ve V2

C3 = Q3

one can find that the Liouville operator L appearing in
equation (1) splits into two components L, and L. The com-
ponent Lo is slowly varying in time whereas L; contains
rapidly oscillating terms at frequencies 2Q and 4Q . For
the case, when relation (2) is fulfilled, one can make the
secular 3pproximation, i.e., retain only a slowly varying
part/n'6 . Correction to the results obtained in this
fashion will be of an order of (y, N/@)2:(y,, N/2)2 or
(vgy N/Q)2,

Making the secular approximation one can find the sta-
tionary solution of the master equation

F=Uput z‘lg xng R '
PR = R=0 N=o|’N1><N1’R" (4)

1
where U is a unitary operator representing the canonical
transformation (3); X = v31/yag
N
N+ DX o 2)xM Ly

(X - 1)2

Z=

IR, Ny > is an eigenstate of the operator+ R =Rgog+Ryp,
Ryjand N = Ry; +Rgp + Rg3. Here Rij =QiQ; (i,j=1,2, 3).
The operators Q; satisfy the boson commutation relation

+
so that
(R, ' Rysj71 = Ry 8ir; - Ry 8557 - (5)
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From solution (4) it is easy to see that the stationary
characteristics of the system depend only on the number
of atoms N and the relation of spontaneous transition
probability yes and nonradiative rate vgy.

By using solution (4) one can define the characteris—
tic function’/®/

i - 4 (N N+2 _ N+1
xR(«f)=<e’§R> gt N DY (N + 2)Y +1’

° ¥ - 12

where Y = xe'f .Here <A >gdenotes the expectation value
of an operator A in the steady state 4).

Once the characteristic function is known, it is easy
to calculate the statistical moments

an

<KR"> = -2 v (&) ]
X £ = (6)
s T G TR =0,
Now, we discuss the influence of collective effects
1 4
and relation X = -1 on the photon statistics of the
Yes

Stokes line and the cross-correlation between Stokes and
Rayleigh lines.

By using the canonical transformation (3), stationary
solution (4) and commutation relation (5) one can find
the steady-state normalized intensity correlation func-
tion of Stokes line gg?: and the cross—correlation func-
tion between Stokes and Rayleigh lines Cé%{ in the form

(2) _ 2
Bos= <Joadpg J52 J32 %/ <23 I3z s
(7)
4 <R*> -2(N+2<RP5 +(N 2o 5N + B)<RD_ - (N+1(N+2)<R>,
3 2 2
(<RZ> - (N+1)<R3 )
(2) -~ 2
Cor= JasJ21 J12 Ja2 g/ <Jp3 J39>5<Jp1 Iy >s= C(a,)s
(8)

-<R4>s +N<R3>s + (N +3)<R2>s - 2(N + 1)<R>,

<RZ 4+ 2R> . <(N+1)R - R%>

The statistical moments <R">; in relations (7,8) can be
found in equation (6).

The dependence of the normalized intensity correlation
function gg?; and cross-correlation function Cé%g on the
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gl2! Fig.2. Normalized inten-
30l "5 sity correlation function

g$?) graphed against the
N-80  parameter X.

parameter X is plotted in
Figs.2 and 3, respective-
ly. From these Figures
30 X one can see that:

i) For the one-atom
case g(s?g =0 and C&) = o,
00 Net thus the Stokes line has
subpoissonian statistics
and the anticorrelation
between Stokes and Ray-
leigh lines comes into existence for all values of the pa-
rameters X,

ii) The collective effects reduce the antibunching of
Stokes line. For the case of several atoms, the Stokes
line has subpoissonian statistics (g{®) <1) only for a sui-
table region of the parameter X and for the case of N> 5
Stokes line has superpoissonian statistics(g(ii >1) for
all values of the parameter X,

iii) For a suitable region of the parameter X.(Fig.3)
the anticorrelation between Stokes and Rayleigh lines
af:h <1) comes into existence for the various number of
atoms N. For the collective limit N » «» the anticorrela-
tion between Stokes and Rayleigh lines is presented only
for the case of X = l(Cgl)‘ = 0.8).

{2)
Cs,R

20 Ssss0cstesty

15 N80
10 0.2 3
\V- ‘-
\\\\___; Fig.3. Cross-correlation
05L N=2 function Céﬁg graphed
against the parameter X.
The dotted curve indicates
00 N=1 the case of N » .
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